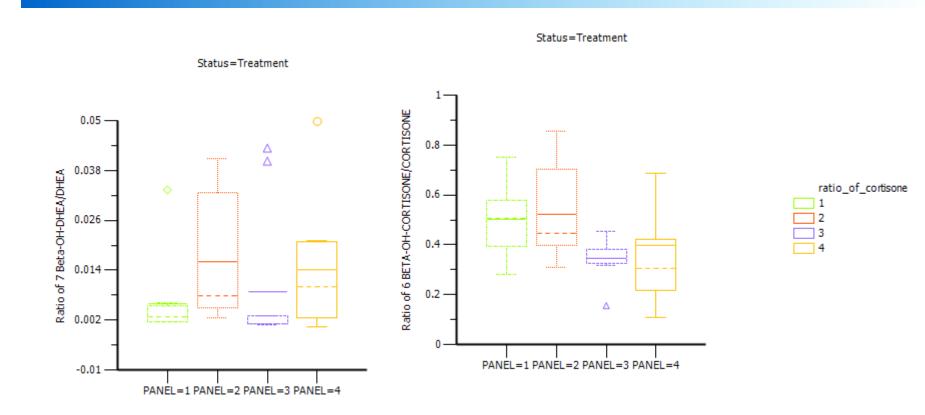
Risk Assessment for Drug-Drug Interactions in Early Development

Bindu Murthy, Pharm.D. Bristol Myers Squibb Special Acknowledgement: Samira Garonzik, Sun Ku Lee

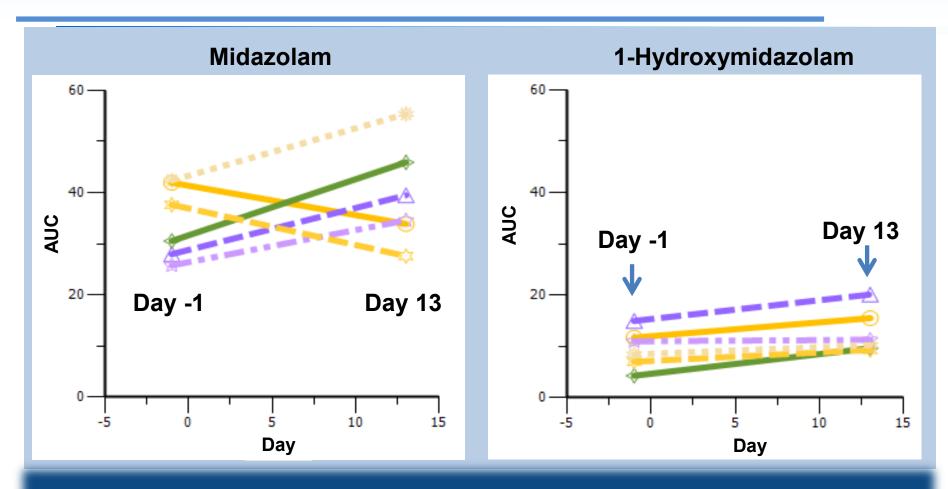

ASCPT 2017 Annual Meeting Workshop
Biomarkers of CYP3A Activity:
What Have We Learned and are We Ready to Utilize
Biomarkers to Replace Clinical DDI Studies?

CASE STUDY 1


Introduction & Rationale

- ❖ A clinical study is often required to put perspective on in vitro results that indicate a drug is a perpetrator of CYP3A DDI (or other enzyme/transporter -inhibitor or inducer)
 - Midazolam is a common probe substrate for the clinical DDI study to assess CYP3A perpetrator potential
- ❖ A biomarker assay to assess CYP3A modulation could provide some assessment prior to a formal DDI
 - Potential resource savings by delaying study
 - Potential to replace formal DDI once validated?
- ❖ Urinary 6β-OH-cortisol, 6β-OH-cortisone, and plasma 4β-OH-cholesterol are considered to be predictive markers of CYP3A activity; however, the signal for inhibition using these markers is much less robust than the signal for induction
- ❖ A recently published paper by Shin et al. suggests that the CYP3A-mediated inhibition with midazolam clearance could be predicted using a combination of urinary DHEA levels, 7β-hydroxy-DHEA:DHEA ratios, 6β-hydroxycortisone: cortisone ratios, and CYP3A5 genotype

Combined Evaluation of MAD & DDI with Midazolam



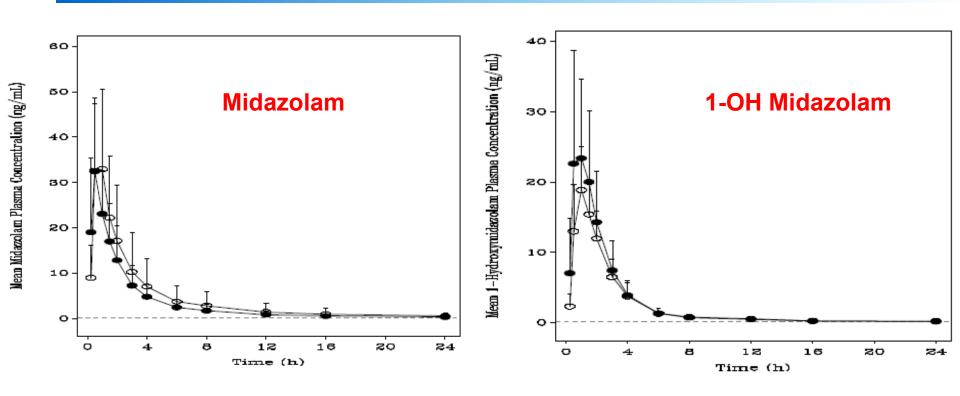
Ratios of 7 Beta-OH-DHEA/DHEA and 6β-OH-Cortisone/Cortisone Following MAD at Different Doses of Compound A

Ratios of 7 Beta-OH-DHEA/DHEA and 6β-OH-Cortisone/Cortisone were not dose dependent and there was substantial inter-subject variability.

The Change in AUCs of Midazolam and 1-OH-midazolam Before and After Dosing with 40 mg of Compound A

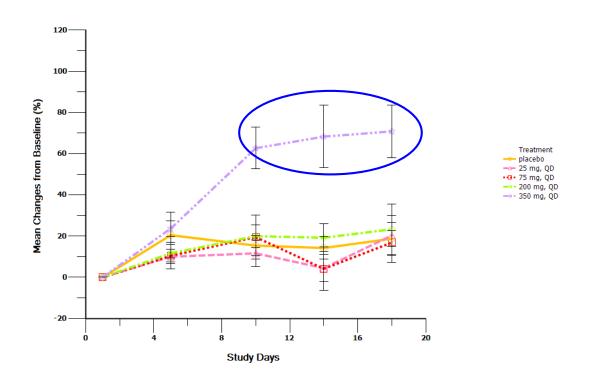
Preliminary data from both midazolam and 1-hydroxymidazolam suggest that Compound A has minimal effect on CYP3A activity and the disposition of 1-OH-midazolam

The Correlation of Mean Ratios of 1'-OH-Midazolam/Midazolam, 7β-OH-DHEA/DHEA and 6β-OH-Cortisone/Cortisone are Directionally Similar

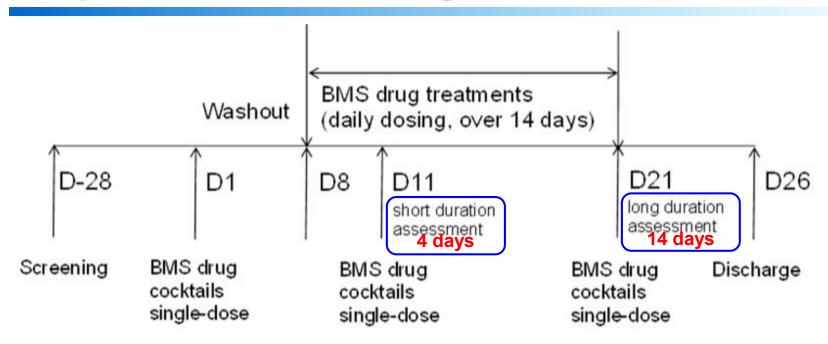

Mean Ratios of 1'-OH-Midazolam/Midazolam, 7β-OH-DHEA/DHEA and 6β-OH-Cortisone/Cortisone were consistent in terms of demonstrating lack of an effect of Compound A on CYP3A4 Activity.

CASE STUDY 2

Introduction & Rationale


- In Vitro Data Suggested Compound B has a Dual Potential for Induction and Inhibition for CYP3A4
 - At the rapeutic concentrations inhibition was observed with an IC50 of 6.4 μ M using midazolam as a probe
 - Induction was also noted with a 4-fold increase in mRNA over control at $2.5\,\mu\text{M}$
- The overall long-term effect on CYP3A4 was difficult to predict
- In order to inform the Phase 2 program in a timely manner, we proposed DDI Strategy as a tiered approach
 - Perform a standard cocktail DDI study to address inhibitory potential at the highest potential therapeutic dose of 350 mg QD
 - In parallel, monitor 4β-OH-cholesterol in the MAD to determine whether induction would occur
- Results from the 4β-OH-cholesterol evaluation in the MAD would inform the need for further induction studies

DDI Study Suggested Compound B inhibited CYP3A4 Resulting in Increased Midazolam & Decreased 1-OH Midazolam Exposure


Analyte	GMR (90% CI) AUC	GMR (90% CI) Cmax	Assessment
Midazolam	1.23 (1.09, 1.39)	1.13 (1.01, 1.26)	Weak Inhibition
1-OH Midazolam	0.88 (0.74, 1.03)	0.76 (0.60, 0.97)	AVYA

4β-OH-cholesterol data from MAD Study Suggested Potential for Induction

- ➤ Meaningful increases (~70%) were observed only at the highest dose panel of 350 mg
- ➤ Compared to strong inducers like rifampin, data suggests that compound B may not be a strong inducer for CYP3A4
- >However, the potential for weak or moderate induction remained a question

Study Design for Repeat Cocktail DDI Study: Multiple Dose Levels and Longer Duration of Treatment

BMS cocktail probes

- Midazolam (3A4): 5 mg
- Digoxin (p-gp): 0.25 mg
- Montelukast (2C8): 10 mg
- Flurbiprofen (2C9): 50 mg
- Omeprazole (2C19): 40 mg

BMS drug treatment cohorts

- Cohort 1:Compound B, 200 mg, QD
- Cohort 2: Compound B, 350 mg, QD

Compound B Caused Time-dependent Alterations in the PK of Midazolam

Dose (mg)	Duration	GMR (90 CI) Cmax	GMR (90 CI) AUC(INF)	Interpretation
200	4 days	1.06 (0.87, 1.30)	1.10 (0.93, 1.31)	Weak inhibition
200	14 days	0.85 (0.68, 1.06)	0.73 (0.59, 0.91)	Weak induction
350	4 days	1.21 (1.08, 1.35)	1.21 (1.13, 1.30)	Weak inhibition
350	14 days	0.92 (0.81, 1.05)	0.69 (0.60, 0.80)	Weak induction

Conclusion: The long-term effect of administration of Compound B was weak induction of CYP3A4. Therefore, no dosage adjustments for sensitive substrates of CYP3A4 are warranted.

Conclusions from Case Studies

- In general, biomarkers are a useful tool to detect potential DDI signals
- From these 2 case studies, biomarkers were predictive of the direction of the DDI
- With agents that have the potential for dual inhibition and induction it remains difficult to predict the net effect of long-term administration
- Clinical studies with probe studies are still needed to confirm the extent of the DDI

Acknowledgements

Jianing Zeng

Qin Ji

Adela Buzescu

Hamza Kandoussi

Kristin Taylor

Alan Schuster

Michelle Dawes

Mark Arnold

Anne-Francoise Aubry

Griff Humphreys

Rama lyer

Xuewen Ma

Naiyu Zheng

Lisa Christopher

Frank LaCreta

Charles Frost

Jean Fortunato

Marsha Epstein

Dennis Grasela

Miroslawa Nowak

Ian Catllet

Ang Liu

Robert Adamczyk

Elsa Myers

Amber Griffies